Author: Anne Konertz

  • How Studying Temples Lead to Carbon Capture

    How Studying Temples Lead to Carbon Capture

    I read this inspiring afforestation story in one of my favorite books, Drawdown. The story is about Akiri Miyawaki, a Japanese botanist who developed a novel afforestation method.

    In the 1970s and 1980s he realized most forest trees where not native trees to Japan. They had been introduced over centuries for timber. He studied original vegetation around shrines and temples and his idea was to reintroduce those native species back to Japan’s forests. This is the method he developed:

    5 steps to growing a native forest
    The Miyawaki method: 5 steps to growing a native forest

    “The Miyawaki method calls for dozens of native tree species and other indigenous flora to be planted close together, often on degraded land devoid of organic matter. As these saplings grow, natural selection plays out and a richly biodiverse, resilient forest results”

    Drawdown: the most comprehensive plan ever proposed to roll back global warming, Hawken – Penguin Books – 2018

    He became a champion of creating indigenous, authentic forests. They are more resilient to climate change and other threads. Over the years he has planted more than 40 million trees around the world, from Brazil to France, India and China.

    What I like most about his approach is that it only takes 2 years of watering and weeding for the plants to become self-sustaining and they are mature after only 10-20 years. These original forests are denser, more biodiverse, and capture and sequester more carbon than plantations. What an inspiring story. Let’s plant more forests!

  • Can Taking a Shower Curb Emissions?

    Can Taking a Shower Curb Emissions?

    As I’m learning more about carbon capture techniques, a Wired article about carbon capture for wastewater treatment caught my eye. While it’s best to safe water when you shower, what can we do with the wastewater we do have? An interesting idea is to use microbes to treat the water as well as capture carbon dioxide.

    Some microbes, like bacteria and microalgae, feed on CO2 itself. So one potential fix would be to replace the typical microbes used in wastewater treatment with these CO2-guzzlers.

    https://www.wired.com/story/the-water-in-your-toilet-could-fight-climate-change-one-day/

    The article is based on a Nature publication. So I checked it out, and now we are getting into more chemistry than I hoped for. Here we go. The authors are looking at different carbon capture approaches while also looking at environmental and economic benefits:

    Outcomes of carbon capture and utilization are clean water and fuels and chemicals, biomass, biochar, or carbonates.
    Capturing carbon with waste water

    Integrating carbon capture and utilization with wastewater treatment may transform energy-intensive, carbon-emitting wastewater treatment plants into integrated water resource recovery facilities that recover energy, nutrients, water and other valuable carbon products with economic, environmental and social benefits.

    https://www.researchgate.net/publication/329656760_Wastewater_treatment_for_carbon_capture_and_utilization

    Here are the five approaches they discuss:

    1. Use microbial electrolysis to enable wastewater treatment, generate hydrogen and mineralize carbon dioxide to carbonates (Microbial electrolytic carbon capture)
    2. Recover electrons from wastewater and reduce carbon dioxide to organic chemicals (Microbial electrosynthesis)
    3. Enrich naturally occurring microalgal communities to take up nitrogen and phosphorus while turning carbon dioxide in biomass (Microalgae cultivation)
    4. Integrate vegetation, soils, and microbial ecosystems to treat wastewater and capture carbon dioxide to plant biomass (Constructed wetlands)
    5. Produce carbon rich charcoal from sludge and other biomass feedstock to provide long term carbon reservoirs and increase fertility in soil (Biochar production)

    In the conclusion they point out all these approaches are early stages, a lot more research and development are needed. But they also highlight the potential:

    Carbon capture and utilization can bring tremendous value to the wastewater industry, CO2-generating industries, and to society as a whole.

    https://www.researchgate.net/publication/329656760_Wastewater_treatment_for_carbon_capture_and_utilization

    What I like most about the article is how it looks at a specific industry and rethinks how that industry can operate carbon neutral or even carbon negative. And while this is early R&D work, they are keeping it real by addressing how these approaches could have environmental as well as economic benefits.

  • Can a Planter Help Capture Carbon?

    Can a Planter Help Capture Carbon?

    Native Forests are not only some of the most biodiverse systems, they are also some of the biggest carbon sinks on the planet. Trees store carbon not only aboveground in biomass but also below ground in the soil. To mitigate global warming we have to stop deforestation. But what about the forest we have already lost, can we re-grow it?

    You can try and replant cleared forests but protecting those young saplings from the elements and ants is vital. It’s a hugely labor-intensive process that is too costly to carry out.

    http://www.bbc.com/future/story/20190301-this-biodegradable-planter-could-help-save-forests

    Bruno and Pedro Rutman, two brothers from Brazil, think we can replant native forest. The BBC highlights their ingenious invention, Nucleário. It is a device to regrow forest without the need for human maintenance.

    Biodegradable planter with rainwater capture and weed and insect barrier
    Biodegradable planter to protect saplings and provide water for the first three years

    It is made from biodegradable materials that decompose after three years. In the first three years of the seedling’s growth, Nucleário protects it from ants and weeds, and provides captured rainwater.

    What I like most about the idea is that it’s a complete system for rainwater capture, sapling protection, and it’s made out of biodegradable material.

    Right now prototypes are being tested all over Brazil, and Bruno and Pedro plan to have the product on the market in 6 months. I’m looking forward to updates as they go into production, let’s hope they are successful in regrowing native forests.

    Sign up for weekly inspiration right in your inbox

  • How Jackie Chan and a Recycle Truck Reduce Greenhouse Gas Emissions

    How Jackie Chan and a Recycle Truck Reduce Greenhouse Gas Emissions

    I’m learning more and more about the greenhouse gas emissions of plastic. According to an article in the New York Times, “Petrochemicals are currently the largest industrial energy consumer and the third-largest industrial emitter of greenhouse gas emissions”.

    That in itself is alarming. On top of that is a study from the University of Hawaii, that shows plastic particles, exposed to the sun, radiate greenhouse gasses. They found once plastic degrades to small particles, such as plastic trash on beaches, greenhouse gasses are emitted.

    While it’s best to avoid plastic as much as we can, what do we do with all the plastic already out there, polluting the environment? And what has martial artist and actor Jackie Chan to do with all this?

    In his National Geographic television documentary Green Heroes he features Arthur Huang, founder of Miniwiz. The company Miniwiz designed Trashpresso, the world’s first mobile waste recycling plant. Trashpresso can be moved on two trailers. In the documentary, kids from Tibet collect and feed it plastic trash such as bottles. The Trashpresso then recycles those into plastic tiles.

    Mobile recycling truck shreds, washes and drys plastic. Then they are put into molds and baked into tiles.

    With Trashpresso we aim to inspire people by showing them the recycling process and teaching them how to recycle.

    https://trashpresso.com/

    What I like most about it? Two things. First, Trashpresso operates incredibly sustainable. The energy used comes from solar panels. The water used is purified and reused over and over again. And air filters prevent the release of toxic vapors. And second, they are turning plastic trash into tiles that can be used as flooring, insulation, or decorative tiles.

    Stay tuned, the third version of the Trashpresso is currently being developed at Miniwiz Labs in Germany and Taiwan.

  • How Counting Trees Might Save the Planet

    How Counting Trees Might Save the Planet

    Trees use sun, rain and carbon dioxide to produce oxygen
    Trees capture carbon from the atmosphere

    Over the last few months I have been reading up on carbon capture technologies. I have been wondering for a while why there is so little discussion about carbon capture of trees. We are developing complex carbon capture technologies, a lot of high-tech solutions. But what about planting plain old trees, is that too low tech? So let’s take a look …

    An interesting article from the Independent pointed me to ecologist Dr. Thomas Crowther and the Crowtherlab in Zurich. That in turn lead me to Trillion Trees, a collaboration between WWF, BirdLife International, and the Wildlife Conservation Society.  Their goal is to end deforestation and restore tree cover.

    It turns out we have been underestimating the number of trees on earth. Crowtherlab is using a novel approach of counting by combining data from ground-based surveys and satellites. They arrived at a much higher number of trees than we previously thought: Three trillion, seven times more than we thought.

    That sounds great! More threes than we thought. But not so fast… They also estimate that there were 6 trillion trees at the dawn of civilization, and that we continue to lose around 10 billion trees per year to human activities.

    OK, now we do get into high tech again: By using AI and machine learning Crowtherlab predicts the number of trees that could be planted in empty patches and on degraded land worldwide. Their vision is to add another trillion to our current three trillion trees.

    How can we add that many trees? The Trillion Trees collaboration’s vision has three components: 1. Planting new trees, 2. Halting tree loss, and 3. Protecting established forests.

    While this is a vision for now, adding that many trees would capture massive amounts of carbon.

    Planting an additional trillion trees would cancel out 10 years of carbon emissions.

    What excites me most about this research is that translates into action. Based on Crowtherlab’s numbers, the Trillion Trees collaboration has developed updated targets. The conclusion? Planting trees on a large scale could capture massive amounts of carbon. Stay tuned for updates, more results and numbers.